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Abstract

An unresolved issue faced by the plant health community is where to prioritize proactive
biosecurity responses globally. Here, we address this problem by identifying candidate priority
locations for the potential spread of emerging pathogens and pests through global crop-species
networks crucial to pursuing sustainability. Candidate global priorities posing high epidemic risks
include locations usually having or connecting to croplands with large host populations, and
countries with high imports or acting as trade intermediaries. Our simulations indicate that
epidemics may expand more rapidly in countries with larger cropland networks. Trade networks
exhibit different priority locations compared to those in cropland networks, underscoring the need
for a multi-purpose strategy to mitigate these crop epidemic challenges worldwide. These network-
based priorities are starting points for strengthening surveillance efforts in global and national
preparedness strategies, especially when integrating additional geographic factors, such as climate

suitability, genetic host vulnerability, and socioeconomic affordability.

Main

Our life depends on healthy plants. The increasing vulnerability of agroecosystems to the
unprecedented emergence and spread of plant diseases and pests (hereafter pests) persistently
affects the likelihood of achieving the UN Sustainable Development Goals (SDGs), such as zero
hunger (SDG2), national economic capacities (SDG8), human livelihoods (SDG3), biodiversity loss
reduction (SDG15), and cultural values. Timely reducing pest invasion risks help sustain current
and future food systems, particularly in an era of global human population growth and rapid

changes in ecological conditions. Notably, preventing food losses caused by pests contributes to
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satisfying the basic needs of millions in countries with limited resources, which is an integral aspect
to ensuring sustainable agriculture. Nevertheless, a primary challenge faced by the global plant
health community, such as national and regional plant protection organizations (NPPOs & RPPOs),
global biosecurity agencies, agricultural research and development organizations, disease
diagnostic networks, and global agri-food industries, is where to allocate always-limited resources

for (pro)active pest surveillance efforts?.

Pest risk mapping has helped much in solving this geographic resource allocation problem,
accounting for spatial risk factors facilitating the long-distance spread of (re)introduced or
(re)emerging pests?3. Integrated geographic risk assessments of pest invasions need to incorporate
explicitly species-specific climatic suitability?, wind patterns®, local and international trade® and
human movement’, and host landscapes®. These integrated assessments are essential to design
evidence-based strategies that effectively mitigate conditions making agroecosystems vulnerable
to the emergence and geographic spread of pests, that is, the dynamic interplay among species

invasiveness, host susceptibility, conducive environment, and dispersal opportunities.

Additionally, network analysis has offered innovative opportunities to quantitatively assess the
risks associated with increasing ecological connectivity and the rapid spread of emerging pests
globally®'°, Evaluating landscape and trade patterns of crops as network structures could help
anticipate the potential spread of invasive pests®!!, and enhance effective identification of
geographic risk priorities. Explicitly incorporating network characteristics such as neighborhood*?,
or more broadly the connectivity between locations, has shown that structures such as topological
hubs and bridges are crucial to inform which locations might play key roles during early stages of
pest invasions®21315, Assessment of the global network structures in cropland and trade of crop-
specific industries is a key first step to building spatially explicit risk-reduction management

programs. Despite their potential to strengthen current national capacities in early warning systems

3



72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

for pest outbreaks, we often lack global data-driven assessments of cropland and trade networks,
especially for low- and middle-income countries coping with new crop epidemic threats!®. We fill
this research gap by assessing the potential roles of contemporary cropland and trade networks of
agricultural commodities in the spread of invasive pests. Understanding cropland connectivity
provides a general idea of the potential gradual expansion of pests within major host landscapes.
Quantifying international trade connectivity offers insights into the potential human-mediated
routes for pest translocation, especially for long-distance dispersal between geographically isolated

host regions.

Because many aspects of pest outbreaks are inherently uncertain when pests have recently
(re)emerged or invaded, risk assessments are crucial to early identify high-risk locations before a
pest species spreads farther and to inform anticipatory responses for invasion mitigation. Many
existing studies often focused on crop-specific national risk assessments and previous global
analyses often lack crop-specific structures (e.g., ©1). However, these crop-insensitive or country-
specific approaches may lack important geographic patterns that are useful for enhancing large-
scale pest management. Here, we show how characterization of global cropland and trade
networks of individual crop species identifies geographic crop-specific patterns that are likely
important for pest invasions, allowing enhanced applications such as targeted invasion
surveillance. NPPOs and global crop industries are fundamental lines of (pro)active invasion
response, especially if biosecurity infrastructures are installed nationally and long-term coordinated

governance for improved plant health is maximized locally.

All else being equal, pest invasion risk is likely higher with larger host populations and
increasing opportunities for long-distance dispersal between croplands, forming cropland network
structures such as cropland hubs and bridges that might facilitate pest spread®!”:!8, The potential

key role of highly connected croplands is expected to result in more opportunities for pests to
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spread, especially given current scenarios of cropland expansion within continents!®2?°, increasing
cropland area that may be vulnerable to pest invasions??2, Likewise, spatial patterns in
international trade are key factors for pests to spread globally?*2* and locally® while overcoming
biogeographic barriers. Greater understanding of potential pest translocation through global trade
networks can inform (pro)active strategies of NPPOs. An unprecedented exponential increase in
international commodity trade likely increases risk of pest invasions nonlinearly'®?+?’_ International
trade has the potential to spread pests through diverse species-specific pathways?>282°, as
exemplified in several pest invasions through trade of agricultural commodities®®-*?(Table S1). The
invasion risk of plant pests through global trade networks depends on which crop products are
transported, postharvest processing®, dispersal opportunities, and the success of current

biosecurity efforts?®.

Proactive responses are aimed at preventing potential future costs that otherwise would be
incurred at advanced stages when pest invasions expand across larger geographic areas and
persist longer within or across nations34. Anticipatory responses against pest invasions need
integration of early global surveillance systems across scales?, so informing simultaneously about
local, regional and global risks. In this paper, our first objective is to provide a global first
approximation to geographic priorities for pest surveillance based on cropland connectivity,
motivating countries and other regions to iteratively improve risk assessments for specific pests.
Our second objective is to provide a comparable first approximation for the global risk of pest
spread through formal trade networks and identify candidate countries for targeting (pro)active
surveillance for the potential (re)introduction of a set of key emerging pests. Our third objective is
to identify countries in the Americas with particularly high risk of pest spread based on landscape
structure effects across simulated invasions, which are candidates for extra attention in

international programs for mitigating pest spread risks.
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Proactive responses are commonly needed at the level of individual crop industries and for use
by their dependent stakeholders. We evaluated the global pest invasion risk for twelve major crops
important for food security and livelihood of millions — avocado, bananas, beans, cacao, cassava,
coffee, maize, pepper, potato, tomato, sweetpotato, and wheat. We additionally provide detailed
assessments of both cropland and trade connectivity to support sustainable agriculture in Central
America and Mexico. Central America offers complexities for responses to pests — in some cases it
is a source of pest-specific resistance genes as a center of diversity, domestication, or origin of
major crops, it structurally bridges the Americas and connects inter-maritime trade, it has a varying
range of biosecurity capacity for pests*!6, and regional climatic and socioeconomic uncertainties

often collide with pest threats!®.

RESULTS

In this section, we first respond to a long-standing practical question: which locations in the global

networks of crop-specific industries are candidate priorities for pest surveillance?

Geographic risk priorities based on cropland connectivity

We first evaluated the risk of global cropland connectivity considering the network topology for
the twelve major crops (Figure 1). We conducted a sensitivity analysis across 192 parameter
combinations within relevant ranges of dispersal parameters (details provided in Methods), so the
mean cropland connectivity for each cropland grid cell is the mean across the most likely risk
scenarios for each location. We focused on high-risk locations and summarized these global results
across the twelve crops with examples of subnational locations having a high mean cropland

connectivity (global hubs in Table 1).
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The difference between mean cropland connectivity and cropland density helped us to
distinguish which locations are identified as more important based on network topology rather than
simply accounting for local large host populations (Figure S1 provides global maps of this
difference). Our global results are summarized with examples of subnational locations having mean
cropland connectivity that is substantially higher ranked compared to their ranking for cropland
density (potential global bridges in Table 1). Our results are also supported by the variance in
cropland connectivity across dispersal parameters, which indicates the consistency of projected

risk across all parameter combinations (Figure S2).

We also focused on cropland connectivity at a regional scale and finer spatial resolution for
Central America and Mexico for these twelve crops. Our regional analysis provided more detailed
information about the role of cropland structures based on the mean cropland connectivity and the
difference in ranks between mean cropland connectivity and cropland density (Figure 2). We
highlight some examples of these regional structures for the twelve crops from a sensitivity analysis
(potential regional hubs and bridges in Table 1). Our regional analysis indicates that invasion risk
relies on spatial resolution and extent of focus, thus providing a better understanding of which

landscape structures need prioritization in regional and national surveillance strategies.

Overall, where a crop had consistent higher density across many contiguous cells, the topology
of cropland networks at both global and regional scales did not provide additional information for
prioritization. For instance, the importance of network topology was globally high for common
beans, maize and tomato in Africa, Europe, and Asia, but showed only slight influence in wheat
croplands (Figure S1). More detailed maps of cropland connectivity in the Americas are also
available in Figure S3-5. The most notable advantage of cropland connectivity was thus the
identification of underlying high-risk structures considerably not captured by cropland density

alone, especially in areas where continuous croplands are not highly dense. Our cropland



166  connectivity assessment suggests that global and regional surveillance and phytosanitary efforts
167 are first required to target cropland hubs and bridges. While cropland hubs might regularly drive
168 invasions to spread (including dispersal and establishment potential), cropland bridges account for
169  aunique role in geographic patterns of invasion corresponding to a more net dispersal potential

170  and so depending on invasive-species dispersal abilities and opportunities.

171  Geographic risk priorities based on global trade networks

172 The role of countries in networks of reported formal international trade of targeted

173  commaodities, and thus in the potential spread of CPPs, was evaluated globally for each crop
174  (Figure 3). We summarized the trade connectivity of each country, highlighting locations likely
175  more important in these real-world networks. First, our analysis shows two types of trade

176  connectivity because of the bidirectional movement and asymmetric nature of trade: export
177  neighborhood and import neighborhood. An export neighborhood considers only exports of a
178  country, and an import neighborhood provides only information about imports, where each is
179  evaluated as a mean index based on a set of network metrics (details provided in Methods).
180  Examples of countries with the highest export or import neighborhood are illustrated in Table 1.
181  (Table S7 provides a complete list of the top ten countries with the highest export or import

182  neighborhood). We illustrated the connectivity of countries in trade networks in terms of

183  unprocessed commodities and the status of key CPPs for each crop (Table S4 provides trade
184  importance ranks for spread of individual target pathogens). However, users can accommodate
185  changes in the analysis for the distribution of any specific CPPs of interest and crop commaodity

186  depending on information availability.

187 Second, our analysis also shows the occurrence of two distinct types of countries in these trade
188  networks (Figure 3). As opposed to producer countries, intermediaries trade crop commaodities but

189  no harvested area is reported for intermediaries (detailed country typologies provided in Figure S6).

8
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The number of countries not producing a particular crop commodity in our trade networks varies
from ~14% in maize to ~70% in cacao with a mean of 18.97+19.7% across the twelve crops
(details for each crop provided in Table S9). Failing to recognize the role of intermediaries in these
networks may lead to biases about the risks of pathogen dispersal via trade among countries,
especially when intermediaries are likely to re-export commodities. This country classification
certainly helps us better understand how the spread potential of some CPPs might pass
undetected but explained by previously unconsidered re-export and how highly connected
intermediaries and producers potentially trigger bridge effects'®3% — a vulnerability situation
frequently jeopardizing international phytosanitary efforts and so calling for (pro)active

compensatory surveillance.

Next, we examined the risk from target countries based on the international trade of individual
countries in Central America or Mexico, the global map of cropland connectivity, and the
geographic distribution of a set of important CPPs (details provided in Methods). Third, our analysis
of international trade of target countries showed how invasion risk varies among country types

(whether producer or trade intermediary), crops, and target CPPs (Figure S7).

The geometry of epidemics through national cropland networks

We also simulated CPP invasions using the impact network analysis framework?!, basing
biophysical networks for invasion on the underlying topological structures of croplands at the
national level in an analysis of the Americas (detailed scenarios provided in Methods). We identified
which countries are likely to have a high proportion of CPP establishment (hereafter average
invasion rate), high variation in invasion rate under a set of scenarios (hereafter variance invasion
rate), and high network link density (Figure 4a, b, c). We assessed these three aspects of invasion
rate as a function of the size (number of nodes) of cropland networks. We found four geospatial

patterns consistent across crops (Figure 4d-g). First, the average invasion rate increased with the

9
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size of national cropland networks, across 384 parameter combinations representing different CPP
establishment, management, and technology adoption scenarios (y = 0.19 logx + 0.21, R? =

0.68, p < 2 x 1071¢) (Figure 4d). Second, network size was negatively related with the variance
invasion rate (y = —0.05logx + 0.17, R? = 0.62, p < 2 x 1071¢), suggesting that small cropland
networks are expected to have variable invasion rates and that variance invasion rate is reduced as

cropland networks become larger (Figure 4e).

Interestingly, there are scaling anomalies to these patterns, i.e., some smaller national
networks have higher invasion rates after considering results adjusted for their cropland network
size (deviated dots above trendline in Figure 4f). We provide some examples of these exceptional
locations having higher invasion rates than would be typical for their cropland size for countries in
The Americas (scenario analysis in Table 1; details for individual crops are provided in Figure S8).
For example, Ecuador and Paraguay have common bean cropland networks of ~100 nodes, but
invasion rates are as nearly high as Brazil, with >1000 nodes (Figure S8). Identifying large
croplands or scaling anomalies is crucial to quantify the epidemic management challenge needed

to face by countries.

The relationship between network size and link density reveals two groups of cropland networks
in the Americas (Figure 4f). Most small national cropland networks with less than 50 nodes had a
high link density. Network density, however, dropped precipitously for large cropland networks with
more than 50 nodes, extending to size of cropland networks of about 2000 nodes (y =
—0.54logx + 0.07 for x > 50, R? = 0.75, p = 2.2 x 1071%). We also found a concave shape in the
relationship curve between the average invasion rate and its variance (Figure 4g). National
cropland networks with a high invasion rate tended to have a low variance in invasion rate. The
variance invasion rate is highest for national cropland networks with an intermediate invasion rate.

The national croplands with a particularly low invasion rate had a low level of variation. There was
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higher uncertainty in scenario outcomes for national cropland networks with intermediate invasion
rates. In summary, these relationships suggest that larger national cropland networks are often
important for the risk of the spread of CPPs, but trade-offs occur for some smaller networks, thus
greatly challenging epidemic management if obviating these geospatial patterns in international

prioritization strategies of crop industries.

Generic patterns of risks across crop-species networks

We have hitherto shown that geographic priorities for phytosanitary efforts are diverse,
depending on network type, country type, crop species and geographic extent of the analysis,
requiring implementation of multi-location surveillance programs. But are underlying generalities
established across these complex crop-species networks? We now turn our attention to basic

identifiable signs that render crop-species networks with particular risk roles in the spread of CPPs.

The distribution of global cropland connectivity of crops is not continuous along the potential
values of cropland connectivity. For all crops, most cropland grid cells peak at intermediate levels
of connectivity (right peak in Figure 4h) and some crops also showed a second peak at low levels of
connectivity. Geographic locations with high host density tended to maintain high cropland
connectivity, and it is known that dense croplands are generally important locations for disease
transmission?®. Locations that are highly connected but have relatively low host density pose the
potential of acting as cropland bridges for disease spread. Cropland bridges occurred in most of the
crops, either gradually scaling regions from high to low cropland connectivity or interconnecting
cropland hubs. The spatial structure of cropland hubs varied across a continuum from large
cropland hubs surrounded by moderately homogeneous croplands to small cropland hubs

surrounded by more or less “fragmented” croplands.
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We found that crop trade networks are scale-free networks (for other general network attributes
see Table S9), a key indication that invasion networks through international trade have few
locations that are highly connected (left tail of distributions in Figure 4i) while most locations have
few international trade links, also indicative that links formed in a process other than expected by
chance (compare distribution of trade connectivity of crops with that of randomly generated
networks in Figure 4i). The negative assortativity of trade networks (Table S10) was also common
across crops, a key indication that trading countries with similar connectivity level are poorly
interconnected. Highly connected locations tend to be trade intermediaries having a high potential
for invasion spread but a low risk of introduction (see countries not producing commaodities in trade
networks in Figure 3). Countries having both high export and import neighborhoods include the
United States, the Netherlands, United Kingdom, France, Spain, ltaly, United Arab Emirates, and
Germany (Table S7-8). These ten-top countries have the highest export and import neighborhood

in at least eight of twelve trade networks evaluated here.

DISCUSSION

Invasion risk assessments based on cropland and trade connectivity are candidates for
decision-support on proactive intervention strategies, especially when information about ever-
evolving CPPs is limiting. These geographic risk assessments illustrate how understanding which
locations have a high risk of CPP (re)invasion® can help in designing surveillance plans and
prioritizing phytosanitary efforts. We provide advances in invasion risk assessment for the spread of
CPPs, linking the “classical” emphasis on host landscape structure!® and patterns in trade?’ to the
proposed deterministic network-based approach for CPP invasions. We used trade and cropland
networks to identify which locations potentially acting as hubs and bridges may be key for

evaluating the spread of CPPs, and for intervening with strategies that could slow this spread.
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Highly connected locations represent potentially effective starting points to prioritize surveillance
for these complex networks of cropland and trade. Predicting the presence or probability of
prevalence of CPPs is out of the scope of this study. In the risk assessments of cropland and trade
networks, we projected and deterministically approximated more likely risks through relative
rankings across a comprehensive range of scenarios in the face of uncertainty. We built our risk
assessments on lessons from previous empirical studies and theoretical concepts (see Methods),
so operationalizing them for the pursuit of an effective biosecurity strategy and providing candidate

guidance for spatially allocating limited resources such as surveillance.

Our results in cropland connectivity are consistent with previous findings® (for crops also
included here), but we provide and update these with finer resolution maps and their resulting risk
areas. We also used network analysis of formal international trade of commodities as a proxy for the
global spread of CPPS¢, to understand potential roles of countries on invasion risk and to highlight
that invasion risk often differs among CPPs. Other relatively comparable studies on trade!® often
differ in the way connectivity is measured, especially lacking network analysis or crop specificity.
Our maps of cropland connectivity and trade networks can be used either individually for
prioritizing plant protection at global, regional, national, and sub-national levels or in combination
to evaluate the risk of CPP release or introduction of any focus countries for their national strategy
(Figure Sn). These maps together with our scenario analysis of epidemic spread are three key

criteria when prioritizing phytosanitary efforts globally in a stepwise approach.

Our geographic analyses pinpoint key components of CPP invasion risk, focusing on the
global need to strengthen prevention strategies through safe trade and cultivation. However,
understanding the full extent of CPP invasion risk will require incorporating geographic dynamics of
planting material exchange3¢-38, landscape interfaces with urban agriculture and non-cultivated

hosts, wood packaging networks?®, CPP-specific climate suitability®®, genetic host vulnerability*®4!,
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multi-host landscapes*?#3, current implementation of local and international invasion
management!®, globalization trends* such as online trading markets, and transport systems such
as entry ports*. These global change factors often shape the (re)emergence and spread of CPP
invasion, but data unavailability largely hinders our ability to design holistic global proactive
strategies. Undocumented informal trade and incomplete geographic distribution of CPPs and
host contribute to these challenges. Shifts in temporal connectivity due to seasonality and long-
term dynamics of trade and cropland networks are also necessary for future quantification of

invasion risk (Figures S5-6).

A next big step is to iteratively tune these criteria with more detailed assessments as more
information becomes available. Because the spatial patterns for individual criteria vary
considerably, the role of joint optimizations in capturing synergies merit evaluation. An effective
surveillance strategy should systematically account for aspects such as metapopulations of CPPs,
and imperfect detection. A global optimal solution strategy for surveillance and mitigation should
be built on a multicriteria approach and urgently needs to coordinate the most cost-effective
alternatives and current operating and investing capacities due to socioeconomic contexts, the
current regional diversity of CPPs for each crop, and the governance (including intergovernmental
support in policies and regulations, designating collateral or mutual responsibilities and benefits,

and engaging public awareness) in large-scale biosecurity efforts applied globally to locally.

METHODS

Risk assessment based on cropland connectivity

We evaluated cropland connectivity as a risk factor for twelve crop species in global and

regional analyses, calculating the cropland connectivity risk index (CCRI) defined by Xing et al.® and
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using the geohabnet package?®. We used Monfreda et al.*’, IFPRI and 1IASA* and IFPRI*® as data
sources for the harvested area fraction of each of the twelve crops with original spatial resolution 5
x 5 minutes. We aggregated grid cells into maps of spatial resolution approximately 111 by 111 km
at the equator (that is, land units or grid cells of 1-degree or equivalent to 12 x 12 grids of the
original spatial resolution) for global analysis and 55 by 55 km (grid cells of 0.5-degree) for regional

analysis.

For the network analysis, we considered each aggregated land grid cell as a node, and the relative
risk of pest dispersal between nodes as weighted links®’. The relative risk of pest movement based

on proximity between each pair of nodes was calculated for each of two commonly used dispersal

. . dij B . . .
kernels: an inverse power-law function (m) , and a negative exponential function

(G
e y(111'319-5). The Vincenty ellipsoid distance dj; between the centroids of each pair of cropland

nodes j and j was calculated using the geographic coordinates in the maps of mean crop harvested
area proportion. The distance between nodes was transformed to Vincenty ellipsoid distances in
meters and then scaled by dividing by the reference distance for one degree of Vincenty ellipsoid

distance at the equator (111,320 m).

An uncertainty quantification, or sensitivity analysis, evaluated how model outcomes
change when one or more parameters varied across a relevant range. Sensitivity analysis allows us
to report results for a range of types of pests with different dispersal kernels. Species-specific
dispersal kernel estimates are often unavailable, so including a range of dispersal kernels allows us
to explore the parameter space likely to be relevant for most pest species. An uncertainty
quantification was performed for dispersal parameters by selecting three levels of parameter g
(0.5, 1.0, and 1.5) for the inverse power-law function and five levels of parameter y (0.05, 0.1, 0.2,

0.3, and 1.0) for the negative exponential function. This range of parameter values is based on
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empirical estimates for several pests*®4:51°2_ | ower values of parameters g and y indicate higher
likelihood of long-distance dispersal®3. When using dispersal kernels of the inverse power-law and
time-steps of 1-degree at the equator, relative chances of pests moving between two cropland

nodes are ~35, 19 and 12% for § = 1.5 while ~50, 33 and 25% for § = 1 for nodes separated by

~111, 222 and 334 km, respectively.

The relative risk due to larger host populations (or greater cropland area)®* for any two
nodes was accounted for by multiplying together the mean cropland density (c) associated with
each node i and j (c;c;) in two gravity models for dispersal risk>. These models consider the risk

due to the proportion of cropland area within cropland grid cells (our proxy for host availability) and

. -B
the probability of dispersal between each pair of cropland grid cells: ;,,;  c;c; (111?19 5) for the

_ L)
inverse power-law model and o, « c;cje y(111'319-5 for the negative exponential model. We used

both gravity model outcomes to represent the risk of pest movement as link weights between each

pair of nodes in adjacency matrices.

Four standard network metrics for evaluating the importance of nodes in network
processes®® were calculated and combined in a weighted sum in the CCRI. The likely importance of
nodes as bridges was evaluated by emphasizing V2 of the mean index weight with betweenness
centrality, highlighting roles of locations that are often not obvious when the cropland density is
considered in only one cell. When calculating betweenness centrality, link weights are generally
treated as distances or costs to estimate shortest paths between nodes, so only for betweenness
centrality we transformed the link weights in the adjacency matrix as 1 — e~?! for the inverse
power law model and 1 — e~ e for the negative exponential model. The other half of the index
weight included three metrics that measure the connectivity of a node (node strength weighted by

1/6), its neighbors (1/6 sum of a node’s nearest neighbors’ node degree), and its neighbors’
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neighbors (1/6 eigenvector centrality; see Table S2). Before summing, each metric was scaled by

dividing by the maximum value observed for that metric for a given crop species.

Threshold minimum values of cropland density and link weight were also evaluated in the
uncertainty quantification. It is unclear, and probably system-specific, the extent to which very low
levels of cropland density facilitate pest dispersal. Use of a threshold focuses the analysis on the
more important production areas. The range of values of cropland density varies by crop. Although
cropland density values generally range between 0 and 1, there are also croplands with locations
where proportion of harvested area is recorded as greater than 1 due to multiple production cycles
a year”. We employed two methods for selecting values of cropland density thresholds. The first
“crop-general” method consists of selecting three constant values as thresholds across all the crop
species, to make crop species comparisons more straightforward (three density values
representing locations with at least 0.01%, 0.2%, and 0.25% cropland coverage). The second
“crop-specific” method includes analyzing the data distribution of cropland proportion values for
each crop species separately, and identifying the 15, 20, or 25" percentile of the cropland density
data for use as thresholds for that crop species. Because the data distributions of cropland density
are positively skewed, we selected small percentile thresholds while keeping a large portion of the
croplands (85, 80 and 75%, respectively; Table S3). Usually the crop-general method retains

smaller portions of the cropland dataset (Table S3).

Cropland connectivity for twelve global crop landscapes — avocado, banana and plantain,
beans, cacao, cassava, coffee, maize, pepper, potato, sweetpotato, tomato, and wheat — was
evaluated both globally and in a targeted regional analysis of Central America and Mexico. In some
cases, multiple categories of the same crop species (e.g., dry beans and green beans) were
combined because pests affect the categories similarly (Table S3). We explore the landscape and

trade of these crops for a wide variety of reasons: their importance in sustaining global food
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security, the relevance for many smallholder farmers in the tropics who strongly depend on them,
some have their center of origin, diversity or domestication in the Americas, the many pest
invasions affecting them, and each crop combines different landscape and trade structures,

allowing our analyses to illustrate and inform across various circumstances.

Interpretation of cropland connectivity maps

Three maps based on the CCRI summarize many features of cropland connectivity. A map
of the mean CCRI, across the results of the uncertainty quantification, shows which regions or
locations in a landscape are likely to be particularly important for many CPP species. A map of the
variance in CCRI across the uncertainty quantification indicates the consistency of the importance
of a location. A map of the difference between CCRI and cropland density points out locations
where the CCRI reveals likely roles for a location that are not simply based on cropland density at
the location. Locations with high cropland connectivity can act as cropland hubs (locations through
which CPPs may effectively spread). Locations with a high, positive difference between rankings for
CCRI and cropland density (locations with high CCRI and relatively low crop density) often have a
potential role as cropland bridges. Because our analysis focuses on the general risk of disease
spread, we consider cropland hubs and bridges in the broad sense as defined above. In the regional
analysis, we refer to these structures as regional cropland hubs or bridges. However, network
analysis usually considers hubs as locations with high node strength, and bridges are locations with
high betweenness centrality. Cropland connectivity risk maps help to identify which counties,

states, or countries potentially have the highest connectivity based on crop hosts.
Risk assessment based on international trade of agricultural commodities
We analyzed information about pairwise trade transactions from the FAOSTAT database®’,

using the annual export and import quantity in tonnes for commodities of each crop during the
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most recent fifteen-year period reports for 2005 to 2019. We selected crop commodities more
likely to be risk pathways for CPP spread by excluding those categories processed by fermentation,
roasting, or sterilization (Table S4). In the FAOSTAT dataset, each transaction takes place between
a pair of reporting countries. In an export activity, the reporter is a country that reports exporting
the commodity. Because some smaller transactions may not be reported individually by both
importer and exporter countries, we took the mean of export and import volumes for each pair of
countries to generate a dataset of the trade amount. We excluded ‘unspecified areas’ transactions

from the dataset, for both reporter and partner countries.

For global structures of international trade, we built network visualizations in which nodes
represent countries and directed links represent the potential pathogen or pest movement between
countries due to international trade®3. Link weights represent the log-transformed mean annual
trade volume over fifteen years between each pair of countries combined with the level of epidemic
invasion of countries. Because available evidence suggests that volume of trade has often
increased exponentially and the associated invasion rate of CPPs has a linear increase over
time?62758 we considered the invasion rate as following a cumulative power-law relationship with

trade volume (Figure Sn). For a trading activity from i to j, t;,;, the invasionrate /;_,; «

1

(%)" The exponent n (set at 2) quantifies the intensity at which invasion rate changes with
i-j

trade, and the maximum value of t;_,; for a crop is a constant to adjust the invasion rate so that it

ranges between O and 1.

We construct a ranking for the potential of geographic CPP invasion inspired by concepts
previously developed in a theoretical framework that employs three main factors for invasion
success®. In a global trade network, the relative likelihood of introducing a pest species through

commodity trade in an importing country (I;) is proportional to the sum of the level of invasion risk
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posed by importing from a certain number (z) of exporting countries. We calculated I; for each
country involved in the global trade network of specific commodities using the following

proportional relationship.

_Ei_ 1 11 11
ZZ:n(‘gi“) < t >m log,,(h; + Tp) log,,(h; + 1p)
*

n(s) maX(ti_)j) *

* *
11 11 % 3
i=1 max (lng(hi + E)) max (loglo(hj + E)) Bi * B;

M is a scaling exponent set at 2. We categorized the levels of each risk factor as in Table
S5-6 and Vignette S1. We approximate local population size () of a pathogen/pest as the national
status and extent of a pathogen/pest. Importation results in the risk of CPP introduction to a
country, and exportation results in the risk of CPP release from a country. Disease risk due to CPP
status and extent varies from introduction to release (Figure S8-9). We refer to habitat specificity
(host specificity as a proxy) (w) as the crop host range of a CPP, a function of the number of major
hosts (H) and alternative hosts (h): w « In(2H + h). Because there can be a great difference
between a wide host range and a narrow host range, we log-transformed the weighted sum of the
number of crop species affected by a CPP>9%°, We refer to geographic range as the number of
countries where a CPP is present (n) divided by the number of countries that produce the crop (N).
We also adjusted the geographic range by the extent of the overall crop-specific producing area of
the country®” (CPA) and ranked the results between 1 and 5: §; = %* In(CPA) - 6=1+

i

Smax

* 4,

The overall invasion potential of a country i to a specific pathogen/pest is, therefore, a
function of the likely local extent of the focal pathogen/pest (e, or ¢, for release or introduction,
respectively), its plant host specificity (¢), and its geographic range (5;): @,; « (&.;) X (w;) X (6).
We propose this general conceptual framework as a proxy for the potential CPP invasion in a

country (¢, ;). We combined the level of potential CPP invasion with the level of trade in a gravity
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model. We first consider the level of potential invasion from two perspectives, based on whether the
country evaluated is the source or destination location of trade. If a pest or pathogen is widespread
in a country, the country may act as a source of invasion when exporting commodities. A country
where a pest or pathogen is absent may be a destination of invasion when importing commodities.
The likelihood of being a source or destination location might vary along a continuum depending on
local pathogen/pest population sizes, host specificity of the pathogen, and geographic host
distribution (Table S5). The potential of CPP invasion is a function of the potential initial population
size in the exporting country and the final risk in a disease-free importing country. We used a
gravity model to represent dispersal processes of CPP, in which a relocation function (I.,; and I,
for export and import trade activity, respectively) indicates the potential of the movement of a
pathogen/pest due to the amount of international trade between countries and whether the CPP
invasion potential is higher in the source country (¢,.;) than in the destination country (¢, ;): g, «

il . . .
q)Lf. In our analysis, the structure of trade networks of crop commaodities represents a relocation

@,
function as suggested by Jongejans et al*® and Chapman et al®. Outcome values of g, represent
entries in an adjacency matrix and link weights in our trade networks, a proxy for the relative
likelihood of very long distance, accidental invasion dispersal events occurring annually due to

formal trade between countries (henceforth pathogen or pest trade movement potential).

The analysis of trade networks as directed networks allows us to determine the potential
influence of each node in terms of its outgoing or incoming links®. To evaluate the role of a country
in the risk of disease dispersal in a trade network, we used four basic measures of network
centrality for each node: node strength, betweenness centrality, PageRank centrality, and
eigenvector centrality (see the rationale for the inclusion of each centrality in Table S2). We scaled

each country centrality value x; by subtracting the minimum and then dividing by the variance of

x;—min (x) _ Xn
var(x) S

the initial unscaled centrality values, x,, = so that the resulting country

max (x) ’
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centrality values x; ranged between 0 and 1. Because combining different network metrics tends to
be more predictive in epidemic networks®® and because we were most interested in the overall
patterns of trade connectivity (separate analyses of each centrality are available in Figure S10-15),
we present an analysis of focal disease dispersal risk due to trade activity based on a weighted
centrality, summing the contribution from each scaled centrality: 1/3 node strength, 1/3
betweenness centrality, 1/6 PageRank and 1/6 eigenvector. To represent the importance of each
country in the trade network, we scaled the resulting weighted centrality between 0 and 1, here

named as a trade connectivity risk index (TCRI).

We distinguish three modes of country node strength in trade networks (out-strength for
exports, in-strength for import, and total-strength for both export and import; details in Table S2).
When calculating TCRI with only outgoing links across the four network metrics (export
neighborhood risk), countries with high TCRI may be more likely to release invasive CPPs. When
calculating TCRI only with incoming links across the four network metrics (import neighborhood
risk), countries with high TCRI are at higher risk of introducing invasive CPPs. When calculating
TCRI with both incoming and outgoing links across the four network metrics, trading countries with
high TCRI may be at risk of release, introduction, or bridge functionality (often not mutually
exclusive and depending on whether a country produces the crop commodity or not), which implies
an easier path for a CPP to spread throughout a trade network. We used node out-strength in our
results as this has been found to be more predictive for epidemic processes of CPPs in directed
networks®®44 such as trade (Table S2). To illustrate the risk among trading countries, we provide an
analysis of CPP invasion risk for each crop system for important example species (next section

giving details about specific CPPs).

Regional analysis of crop-commodity trade
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We also integrated international trade networks with cropland connectivity maps. In these
networks, each node represents a country centroid (the central location in latitude and longitude of
a country). Although we used country centroids to illustrate the CPP introduction locations in a
country, they only represented entry points at coarse resolution as actual introduction locations
more likely correspond to ports and surrounding areas. Each link represents the existence of at
least one trade event between two countries, where the arrow point represents the importing
country. Because visualizing multi-link networks (networks with many links between each pair of
countries) on a CCRI map can be impractical, we focused on a set of exporting countries. We
focused on the intercountry trade for countries trading with Central America and Mexico, and on

emerging/reemerging crop CPPs.

Each crop has many CPPs so, for practicality we focused on the major CPPs with a
restricted geographic distribution, focusing on three groups: emerging, reemerging, and endemic
CPPs. We defined diseases as emerging if the disease is becoming of greater importance, with
increases in the incidence, geographic or host range, and virulence®:. There can be a lag phase
between introduction and emergence that has a length specific to a given CPP*!6, We focused
mainly on geographic distribution at the country level, CPP category (e.g., oomycete), center of
emergence (the location where the CPP was first reported affecting the crop or where symptoms
were first reported), major and alternative hosts, and main carriers for transmission (this
information is provided in Table S4). The CABI®*® and EPPO®° databases provide the geographic
distribution of CPPs at the country scale, we complemented this information with individual
literature about these CPPs. Reports on the geographic distribution tend to be biased toward lack
of reports where there are fewer efforts to characterize systems or incentives to avoid formally
reporting presence. We used formal reports and, in the absence of public, explicit information, we

conducted an expert knowledge assessment of the relative importance of trade for the spread of
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these CPPs. From the list of CPPs for each crop, several of the present authors evaluated the
geographic distribution of CPPs based on own expert experience, and to rank the relative
importance of CPPs in terms of the risk for spread through trade using a rating scaled between 1 to

5 (see details in vignette S3).

Our analysis of global cropland connectivity corresponds to a greater range in latitude [-58°,
60 °] and longitude [-140°, 180°], while the regional analyses focused on a smaller range in latitude
[5°, 32 °] and longitude [-115°, -75°]. Our regional analyses of cropland focused on eight countries:
Mexico, Guatemala, Belize, El Salvador, Honduras, Nicaragua, Costa Rica, and Panama. Analyses
and visual representations were generated using multiple packages in the R programming

environment version 4.1.2.
Scenario analysis for invasion in cropland networks

We aggregated original maps of cropland density into maps of 0.5-degree spatial resolution.
We apportioned each aggregated cropland location in the map of the Americas into their respective
country. Because decisions and strategies are commonly formulated at the national level, we
generated crop-specific adjacency matrices of cropland networks by country. Nodes in each
national cropland network represent cropland locations with land unit size = 55.7 x 55.7 km?2.
Evaluating national networks allows comparison of countries, although it does not specifically
include the risk of invasions across borders. Link weight (w) indicates the likelihood of the spread of

epidemic invasions between cropland locations calculated with a gravity model of the inverse
power-law: w = cicjdi_jﬁ. Parameters were the same as in the cropland connectivity analysis.

Cropland thresholds were the crop-specific threshold values used for cropland connectivity
analyses. After applying the crop-specific thresholds, cropland density was scaled so that the

maximum value was 1. We evaluated a single value of the parameter g (1.5) and a single threshold
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for the value of link weights that considers the formation of links only when the distance between

croplands was 500 km or shorter (known as maximum search radius).

We used the INAscene function of the INA package?! to evaluate scenario analyses of CPP
establishment, spread, and management on the cropland network of each country in the Americas
as follows (see Vignette S2 and the INA user guide®? for complete descriptions and definitions of
parameters). We evaluated scenarios for cropland locations initially having information about
management (initinfo.p = 0.01,0.05, 0.1, or 0.2), and CPPs established (a proxy for outbreak size,
initbio.p =0.01, 0.05, or 0.1). Socioeconomic and biophysical cropland networks by country were
generated using gravity models as described above in this section. We also evaluated scenarios
based on different probabilities of the adoption of management (probadoptmean = 0.1, 0.5 and
probadoptsd = 0.1, 0.3), probabilities of establishment of CPPs (probestabmean = 0.5, 0.7 and
probestbsd = 0.1, 0.25), and different effect sizes for management (maneffmean = 0.3, 0.5 and
maneffsd = 0.1). We conducted 10 realizations for each scenario to evaluate, for each country, the
mean invasion rate (proportion of croplands in the national network with the invasive species
established) after five-time steps from randomly assigned initial invasion locations (nreals = 100
and ntimesteps = 5). We conducted a sensitivity analysis for the 384 scenarios to determine the
mean and variance of the national invasion rates, comparing the risk of spread of CPPs for each
combination of country and crop. We considered only countries having at least five cropland cells

for a given crop.

We also evaluated the network density of each national cropland network. Network density
is the proportion of links formed over the total number of potential links of an epidemic network and
is a measure of the likely epidemic connectivity of a cropland network. We examined the
relationship between these variables by fitting the log-transformed size of national cropland

networks (number of cropland nodes) as a potential explanatory variable for the average proportion
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of establishment, the variation of the establishment, and density of cropland network. We selected

linear regression models based on R? and statistical significance (P<0.001).

Risk commonalities in cropland and trade networks

We explore common characteristics among crop connected landscapes through
comparison of distribution of CCRI values. We assessed the consistency of available cropland
density maps with our knowledge of actual distributions of cropland. We identified three general
patterns in cropland connectivity across crops. Whether locations with high cropland density
remain with a high CCRI (1), whether the position of cropland bridges in reference to cropland hubs
is common across crops (2) and whether the size and location of cropland hubs in relation to the

remaining landscape vary across crops (3).

Network science provides a unified perspective on the characteristics of international crop
trade systems. Trade networks of crop commodities are complex, and their general attributes can
influence the risk of the spread of CPPs. We evaluated whether national connectivity in agricultural
trade networks follows a scale-free power-law distribution — a general network feature likely to
influence CPP spread®— using a Kolmogorov-Smirnov (KS) test. A KS test evaluates whether a
network fits the power-law distribution and if so, finds the exponent that fits the model based on
maximum likelihood. To evaluate whether countries with similar levels of centrality are connected
(i.e., whether there is preferential connectivity among two countries with high node strength), we
calculated the assortativity among countries based on five centralities (node strength, node degree,
betweenness, PageRank and eigenvector centrality). We also built a matrix to identify which

countries with the highest TCRI are the same in multiple trade networks (Table S7-8).

Data availability
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Data sources are provided with this paper. Maps of cropland connectivity are available at

https://figshare.com/account/home#/projects/147823, markdown reports.

Code availability

The latest versions of code templates for reproducing the analyses presented in this article is

available at: https://github.com/GarrettLab/CroplandConnectivity for cropland connectivity,

https://github.com/AaronPlex/International TradeNetworks for trade networks and

https://github.com/GarrettLab/INA for scenario analysis.
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