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 25 

Abstract 26 

An unresolved issue faced by the plant health community is where to prioritize proactive 27 

biosecurity responses globally. Here, we address this problem by identifying candidate priority 28 

locations for the potential spread of emerging pathogens and pests through global crop-species 29 

networks crucial to pursuing sustainability. Candidate global priorities posing high epidemic risks 30 

include locations usually having or connecting to croplands with large host populations, and 31 

countries with high imports or acting as trade intermediaries. Our simulations indicate that 32 

epidemics may expand more rapidly in countries with larger cropland networks. Trade networks 33 

exhibit different priority locations compared to those in cropland networks, underscoring the need 34 

for a multi-purpose strategy to mitigate these crop epidemic challenges worldwide. These network-35 

based priorities are starting points for strengthening surveillance efforts in global and national 36 

preparedness strategies, especially when integrating additional geographic factors, such as climate 37 

suitability, genetic host vulnerability, and socioeconomic affordability. 38 

 39 

Main 40 

Our life depends on healthy plants. The increasing vulnerability of agroecosystems to the 41 

unprecedented emergence and spread of plant diseases and pests (hereafter pests) persistently 42 

affects the likelihood of achieving the UN Sustainable Development Goals (SDGs), such as zero 43 

hunger (SDG2), national economic capacities (SDG8), human livelihoods (SDG3), biodiversity loss 44 

reduction (SDG15), and cultural values. Timely reducing pest invasion risks help sustain current 45 

and future food systems, particularly in an era of global human population growth and rapid 46 

changes in ecological conditions. Notably, preventing food losses caused by pests contributes to 47 
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satisfying the basic needs of millions in countries with limited resources, which is an integral aspect 48 

to ensuring sustainable agriculture. Nevertheless, a primary challenge faced by the global plant 49 

health community, such as national and regional plant protection organizations (NPPOs & RPPOs), 50 

global biosecurity agencies, agricultural research and development organizations, disease 51 

diagnostic networks, and global agri-food industries, is where to allocate always-limited resources 52 

for (pro)active pest surveillance efforts1. 53 

Pest risk mapping has helped much in solving this geographic resource allocation problem, 54 

accounting for spatial risk factors facilitating the long-distance spread of (re)introduced or 55 

(re)emerging pests2,3. Integrated geographic risk assessments of pest invasions need to incorporate 56 

explicitly species-specific climatic suitability4, wind patterns5, local and international trade6 and 57 

human movement7, and host landscapes8. These integrated assessments are essential to design 58 

evidence-based strategies that effectively mitigate conditions making agroecosystems vulnerable 59 

to the emergence and geographic spread of pests, that is, the dynamic interplay among species 60 

invasiveness, host susceptibility, conducive environment, and dispersal opportunities. 61 

Additionally, network analysis has offered innovative opportunities to quantitatively assess the 62 

risks associated with increasing ecological connectivity and the rapid spread of emerging pests 63 

globally9,10. Evaluating landscape and trade patterns of crops as network structures could help 64 

anticipate the potential spread of invasive pests6,11, and enhance effective identification of 65 

geographic risk priorities. Explicitly incorporating network characteristics such as neighborhood12, 66 

or more broadly the connectivity between locations, has shown that structures such as topological 67 

hubs and bridges are crucial to inform which locations might play key roles during early stages of 68 

pest invasions5,9,13-15. Assessment of the global network structures in cropland and trade of crop-69 

specific industries is a key first step to building spatially explicit risk-reduction management 70 

programs. Despite their potential to strengthen current national capacities in early warning systems 71 
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for pest outbreaks, we often lack global data-driven assessments of cropland and trade networks, 72 

especially for low- and middle-income countries coping with new crop epidemic threats16. We fill 73 

this research gap by assessing the potential roles of contemporary cropland and trade networks of 74 

agricultural commodities in the spread of invasive pests. Understanding cropland connectivity 75 

provides a general idea of the potential gradual expansion of pests within major host landscapes. 76 

Quantifying international trade connectivity offers insights into the potential human-mediated 77 

routes for pest translocation, especially for long-distance dispersal between geographically isolated 78 

host regions. 79 

Because many aspects of pest outbreaks are inherently uncertain when pests have recently 80 

(re)emerged or invaded, risk assessments are crucial to early identify high-risk locations before a 81 

pest species spreads farther and to inform anticipatory responses for invasion mitigation. Many 82 

existing studies often focused on crop-specific national risk assessments and previous global 83 

analyses often lack crop-specific structures (e.g., 6,16). However, these crop-insensitive or country-84 

specific approaches may lack important geographic patterns that are useful for enhancing large-85 

scale pest management. Here, we show how characterization of global cropland and trade 86 

networks of individual crop species identifies geographic crop-specific patterns that are likely 87 

important for pest invasions, allowing enhanced applications such as targeted invasion 88 

surveillance. NPPOs and global crop industries are fundamental lines of (pro)active invasion 89 

response, especially if biosecurity infrastructures are installed nationally and long-term coordinated 90 

governance for improved plant health is maximized locally. 91 

All else being equal, pest invasion risk is likely higher with larger host populations and 92 

increasing opportunities for long-distance dispersal between croplands, forming cropland network 93 

structures such as cropland hubs and bridges that might facilitate pest spread8,17,18. The potential 94 

key role of highly connected croplands is expected to result in more opportunities for pests to 95 
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spread, especially given current scenarios of cropland expansion within continents19,20, increasing 96 

cropland area that may be vulnerable to pest invasions21,22. Likewise, spatial patterns in 97 

international trade are key factors for pests to spread globally23,24 and locally9 while overcoming 98 

biogeographic barriers. Greater understanding of potential pest translocation through global trade 99 

networks can inform (pro)active strategies of NPPOs. An unprecedented exponential increase in 100 

international commodity trade likely increases risk of pest invasions nonlinearly16,24-27. International 101 

trade has the potential to spread pests through diverse species-specific pathways25,28,29, as 102 

exemplified in several pest invasions through trade of agricultural commodities30-32(Table S1). The 103 

invasion risk of plant pests through global trade networks depends on which crop products are 104 

transported, postharvest processing33, dispersal opportunities, and the success of current 105 

biosecurity efforts26. 106 

Proactive responses are aimed at preventing potential future costs that otherwise would be 107 

incurred at advanced stages when pest invasions expand across larger geographic areas and 108 

persist longer within or across nations34. Anticipatory responses against pest invasions need 109 

integration of early global surveillance systems across scales1, so informing simultaneously about 110 

local, regional and global risks. In this paper, our first objective is to provide a global first 111 

approximation to geographic priorities for pest surveillance based on cropland connectivity, 112 

motivating countries and other regions to iteratively improve risk assessments for specific pests. 113 

Our second objective is to provide a comparable first approximation for the global risk of pest 114 

spread through formal trade networks and identify candidate countries for targeting (pro)active 115 

surveillance for the potential (re)introduction of a set of key emerging pests. Our third objective is 116 

to identify countries in the Americas with particularly high risk of pest spread based on landscape 117 

structure effects across simulated invasions, which are candidates for extra attention in 118 

international programs for mitigating pest spread risks. 119 
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Proactive responses are commonly needed at the level of individual crop industries and for use 120 

by their dependent stakeholders. We evaluated the global pest invasion risk for twelve major crops 121 

important for food security and livelihood of millions – avocado, bananas, beans, cacao, cassava, 122 

coffee, maize, pepper, potato, tomato, sweetpotato, and wheat. We additionally provide detailed 123 

assessments of both cropland and trade connectivity to support sustainable agriculture in Central 124 

America and Mexico. Central America offers complexities for responses to pests – in some cases it 125 

is a source of pest-specific resistance genes as a center of diversity, domestication, or origin of 126 

major crops, it structurally bridges the Americas and connects inter-maritime trade, it has a varying 127 

range of biosecurity capacity for pests4,16, and regional climatic and socioeconomic uncertainties 128 

often collide with pest threats16. 129 

 130 

RESULTS 131 

In this section, we first respond to a long-standing practical question: which locations in the global 132 

networks of crop-specific industries are candidate priorities for pest surveillance? 133 

Geographic risk priorities based on cropland connectivity 134 

We first evaluated the risk of global cropland connectivity considering the network topology for 135 

the twelve major crops (Figure 1). We conducted a sensitivity analysis across 192 parameter 136 

combinations within relevant ranges of dispersal parameters (details provided in Methods), so the 137 

mean cropland connectivity for each cropland grid cell is the mean across the most likely risk 138 

scenarios for each location. We focused on high-risk locations and summarized these global results 139 

across the twelve crops with examples of subnational locations having a high mean cropland 140 

connectivity (global hubs in Table 1). 141 
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The difference between mean cropland connectivity and cropland density helped us to 142 

distinguish which locations are identified as more important based on network topology rather than 143 

simply accounting for local large host populations (Figure S1 provides global maps of this 144 

difference). Our global results are summarized with examples of subnational locations having mean 145 

cropland connectivity that is substantially higher ranked compared to their ranking for cropland 146 

density (potential global bridges in Table 1).  Our results are also supported by the variance in 147 

cropland connectivity across dispersal parameters, which indicates the consistency of projected 148 

risk across all parameter combinations (Figure S2). 149 

We also focused on cropland connectivity at a regional scale and finer spatial resolution for 150 

Central America and Mexico for these twelve crops. Our regional analysis provided more detailed 151 

information about the role of cropland structures based on the mean cropland connectivity and the 152 

difference in ranks between mean cropland connectivity and cropland density (Figure 2). We 153 

highlight some examples of these regional structures for the twelve crops from a sensitivity analysis 154 

(potential regional hubs and bridges in Table 1). Our regional analysis indicates that invasion risk 155 

relies on spatial resolution and extent of focus, thus providing a better understanding of which 156 

landscape structures need prioritization in regional and national surveillance strategies. 157 

Overall, where a crop had consistent higher density across many contiguous cells, the topology 158 

of cropland networks at both global and regional scales did not provide additional information for 159 

prioritization. For instance, the importance of network topology was globally high for common 160 

beans, maize and tomato in Africa, Europe, and Asia, but showed only slight influence in wheat 161 

croplands (Figure S1). More detailed maps of cropland connectivity in the Americas are also 162 

available in Figure S3-5. The most notable advantage of cropland connectivity was thus the 163 

identification of underlying high-risk structures considerably not captured by cropland density 164 

alone, especially in areas where continuous croplands are not highly dense. Our cropland 165 
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connectivity assessment suggests that global and regional surveillance and phytosanitary efforts 166 

are first required to target cropland hubs and bridges. While cropland hubs might regularly drive 167 

invasions to spread (including dispersal and establishment potential), cropland bridges account for 168 

a unique role in geographic patterns of invasion corresponding to a more net dispersal potential 169 

and so depending on invasive-species dispersal abilities and opportunities. 170 

Geographic risk priorities based on global trade networks 171 

The role of countries in networks of reported formal international trade of targeted 172 

commodities, and thus in the potential spread of CPPs, was evaluated globally for each crop 173 

(Figure 3).  We summarized the trade connectivity of each country, highlighting locations likely 174 

more important in these real-world networks. First, our analysis shows two types of trade 175 

connectivity because of the bidirectional movement and asymmetric nature of trade: export 176 

neighborhood and import neighborhood. An export neighborhood considers only exports of a 177 

country, and an import neighborhood provides only information about imports, where each is 178 

evaluated as a mean index based on a set of network metrics (details provided in Methods). 179 

Examples of countries with the highest export or import neighborhood are illustrated in Table 1. 180 

(Table S7 provides a complete list of the top ten countries with the highest export or import 181 

neighborhood). We illustrated the connectivity of countries in trade networks in terms of 182 

unprocessed commodities and the status of key CPPs for each crop (Table S4 provides trade 183 

importance ranks for spread of individual target pathogens). However, users can accommodate 184 

changes in the analysis for the distribution of any specific CPPs of interest and crop commodity 185 

depending on information availability. 186 

Second, our analysis also shows the occurrence of two distinct types of countries in these trade 187 

networks (Figure 3). As opposed to producer countries, intermediaries trade crop commodities but 188 

no harvested area is reported for intermediaries (detailed country typologies provided in Figure S6). 189 
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The number of countries not producing a particular crop commodity in our trade networks varies 190 

from ~14% in maize to ~70% in cacao with a mean of 18.97±19.7% across the twelve crops 191 

(details for each crop provided in Table S9). Failing to recognize the role of intermediaries in these 192 

networks may lead to biases about the risks of pathogen dispersal via trade among countries, 193 

especially when intermediaries are likely to re-export commodities. This country classification 194 

certainly helps us better understand how the spread potential of some CPPs might pass 195 

undetected but explained by previously unconsidered re-export and how highly connected 196 

intermediaries and producers potentially trigger bridge effects15,35 – a vulnerability situation 197 

frequently jeopardizing international phytosanitary efforts and so calling for (pro)active 198 

compensatory surveillance. 199 

Next, we examined the risk from target countries based on the international trade of individual 200 

countries in Central America or Mexico, the global map of cropland connectivity, and the 201 

geographic distribution of a set of important CPPs (details provided in Methods). Third, our analysis 202 

of international trade of target countries showed how invasion risk varies among country types 203 

(whether producer or trade intermediary), crops, and target CPPs (Figure S7). 204 

The geometry of epidemics through national cropland networks 205 

We also simulated CPP invasions using the impact network analysis framework21, basing 206 

biophysical networks for invasion on the underlying topological structures of croplands at the 207 

national level in an analysis of the Americas (detailed scenarios provided in Methods). We identified 208 

which countries are likely to have a high proportion of CPP establishment (hereafter average 209 

invasion rate), high variation in invasion rate under a set of scenarios (hereafter variance invasion 210 

rate), and high network link density (Figure 4a, b, c). We assessed these three aspects of invasion 211 

rate as a function of the size (number of nodes) of cropland networks. We found four geospatial 212 

patterns consistent across crops (Figure 4d-g). First, the average invasion rate increased with the 213 
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size of national cropland networks, across 384 parameter combinations representing different CPP 214 

establishment, management, and technology adoption scenarios (𝑦 = 0.19 log 𝑥 + 0.21,   𝑅2 =215 

0.68,  𝑝 < 2 × 10−16) (Figure 4d). Second, network size was negatively related with the variance 216 

invasion rate (𝑦 = −0.05 log 𝑥 + 0.17,   𝑅2 = 0.62,  𝑝 < 2 × 10−16), suggesting that small cropland 217 

networks are expected to have variable invasion rates and that variance invasion rate is reduced as 218 

cropland networks become larger (Figure 4e).  219 

Interestingly, there are scaling anomalies to these patterns, i.e., some smaller national 220 

networks have higher invasion rates after considering results adjusted for their cropland network 221 

size (deviated dots above trendline in Figure 4f). We provide some examples of these exceptional 222 

locations having higher invasion rates than would be typical for their cropland size for countries in 223 

The Americas (scenario analysis in Table 1; details for individual crops are provided in Figure S8). 224 

For example, Ecuador and Paraguay have common bean cropland networks of ~100 nodes, but 225 

invasion rates are as nearly high as Brazil, with >1000 nodes (Figure S8). Identifying large 226 

croplands or scaling anomalies is crucial to quantify the epidemic management challenge needed 227 

to face by countries. 228 

The relationship between network size and link density reveals two groups of cropland networks 229 

in the Americas (Figure 4f). Most small national cropland networks with less than 50 nodes had a 230 

high link density. Network density, however, dropped precipitously for large cropland networks with 231 

more than 50 nodes, extending to size of cropland networks of about 2000 nodes (𝑦 =232 

−0.54 log 𝑥 + 0.07  𝑓𝑜𝑟 𝑥 > 50 ,  𝑅2 = 0.75,  𝑝 = 2.2 × 10−16). We also found a concave shape in the 233 

relationship curve between the average invasion rate and its variance (Figure 4g). National 234 

cropland networks with a high invasion rate tended to have a low variance in invasion rate. The 235 

variance invasion rate is highest for national cropland networks with an intermediate invasion rate. 236 

The national croplands with a particularly low invasion rate had a low level of variation. There was 237 
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higher uncertainty in scenario outcomes for national cropland networks with intermediate invasion 238 

rates. In summary, these relationships suggest that larger national cropland networks are often 239 

important for the risk of the spread of CPPs, but trade-offs occur for some smaller networks, thus 240 

greatly challenging epidemic management if obviating these geospatial patterns in international 241 

prioritization strategies of crop industries. 242 

Generic patterns of risks across crop-species networks 243 

We have hitherto shown that geographic priorities for phytosanitary efforts are diverse, 244 

depending on network type, country type, crop species and geographic extent of the analysis, 245 

requiring implementation of multi-location surveillance programs. But are underlying generalities 246 

established across these complex crop-species networks? We now turn our attention to basic 247 

identifiable signs that render crop-species networks with particular risk roles in the spread of CPPs. 248 

The distribution of global cropland connectivity of crops is not continuous along the potential 249 

values of cropland connectivity. For all crops, most cropland grid cells peak at intermediate levels 250 

of connectivity (right peak in Figure 4h) and some crops also showed a second peak at low levels of 251 

connectivity. Geographic locations with high host density tended to maintain high cropland 252 

connectivity, and it is known that dense croplands are generally important locations for disease 253 

transmission18. Locations that are highly connected but have relatively low host density pose the 254 

potential of acting as cropland bridges for disease spread. Cropland bridges occurred in most of the 255 

crops, either gradually scaling regions from high to low cropland connectivity or interconnecting 256 

cropland hubs. The spatial structure of cropland hubs varied across a continuum from large 257 

cropland hubs surrounded by moderately homogeneous croplands to small cropland hubs 258 

surrounded by more or less “fragmented” croplands. 259 
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We found that crop trade networks are scale-free networks (for other general network attributes 260 

see Table S9), a key indication that invasion networks through international trade have few 261 

locations that are highly connected (left tail of distributions in Figure 4i) while most locations have 262 

few international trade links, also indicative that links formed in a process other than expected by 263 

chance (compare distribution of trade connectivity of crops with that of randomly generated 264 

networks in Figure 4i). The negative assortativity of trade networks (Table S10) was also common 265 

across crops, a key indication that trading countries with similar connectivity level are poorly 266 

interconnected. Highly connected locations tend to be trade intermediaries having a high potential 267 

for invasion spread but a low risk of introduction (see countries not producing commodities in trade 268 

networks in Figure 3). Countries having both high export and import neighborhoods include the 269 

United States, the Netherlands, United Kingdom, France, Spain, Italy, United Arab Emirates, and 270 

Germany (Table S7-8). These ten-top countries have the highest export and import neighborhood 271 

in at least eight of twelve trade networks evaluated here. 272 

 273 

DISCUSSION 274 

Invasion risk assessments based on cropland and trade connectivity are candidates for 275 

decision-support on proactive intervention strategies, especially when information about ever-276 

evolving CPPs is limiting. These geographic risk assessments illustrate how understanding which 277 

locations have a high risk of CPP (re)invasion8 can help in designing surveillance plans and 278 

prioritizing phytosanitary efforts. We provide advances in invasion risk assessment for the spread of 279 

CPPs, linking the “classical” emphasis on host landscape structure18 and patterns in trade27 to the 280 

proposed deterministic network-based approach for CPP invasions. We used trade and cropland 281 

networks to identify which locations potentially acting as hubs and bridges may be key for 282 

evaluating the spread of CPPs, and for intervening with strategies that could slow this spread. 283 
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Highly connected locations represent potentially effective starting points to prioritize surveillance 284 

for these complex networks of cropland and trade. Predicting the presence or probability of 285 

prevalence of CPPs is out of the scope of this study. In the risk assessments of cropland and trade 286 

networks, we projected and deterministically approximated more likely risks through relative 287 

rankings across a comprehensive range of scenarios in the face of uncertainty. We built our risk 288 

assessments on lessons from previous empirical studies and theoretical concepts (see Methods), 289 

so operationalizing them for the pursuit of an effective biosecurity strategy and providing candidate 290 

guidance for spatially allocating limited resources such as surveillance. 291 

Our results in cropland connectivity are consistent with previous findings8 (for crops also 292 

included here), but we provide and update these with finer resolution maps and their resulting risk 293 

areas. We also used network analysis of formal international trade of commodities as a proxy for the 294 

global spread of CPPS6, to understand potential roles of countries on invasion risk and to highlight 295 

that invasion risk often differs among CPPs. Other relatively comparable studies on trade16 often 296 

differ in the way connectivity is measured, especially lacking network analysis or crop specificity. 297 

Our maps of cropland connectivity and trade networks can be used either individually for 298 

prioritizing plant protection at global, regional, national, and sub-national levels or in combination 299 

to evaluate the risk of CPP release or introduction of any focus countries for their national strategy 300 

(Figure Sn). These maps together with our scenario analysis of epidemic spread are three key 301 

criteria when prioritizing phytosanitary efforts globally in a stepwise approach.  302 

Our geographic analyses pinpoint key components of CPP invasion risk, focusing on the 303 

global need to strengthen prevention strategies through safe trade and cultivation. However, 304 

understanding the full extent of CPP invasion risk will require incorporating geographic dynamics of 305 

planting material exchange36-38, landscape interfaces with urban agriculture and non-cultivated 306 

hosts, wood packaging networks28, CPP-specific climate suitability39, genetic host vulnerability40,41, 307 
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multi-host landscapes42,43, current implementation of local and international invasion 308 

management16,  globalization trends44 such as online trading markets, and transport systems such 309 

as entry ports45. These global change factors often shape the (re)emergence and spread of CPP 310 

invasion, but data unavailability largely hinders our ability to design holistic global proactive 311 

strategies. Undocumented informal trade and incomplete  geographic distribution of CPPs and 312 

host contribute to these challenges. Shifts in temporal connectivity due to seasonality and long-313 

term dynamics of trade and cropland networks are also necessary for future quantification of 314 

invasion risk (Figures S5-6).  315 

A next big step is to iteratively tune these criteria with more detailed assessments as more 316 

information becomes available. Because the spatial patterns for individual criteria vary 317 

considerably, the role of joint optimizations in capturing synergies merit evaluation. An effective 318 

surveillance strategy should systematically account for aspects such as metapopulations of CPPs, 319 

and imperfect detection. A global optimal solution strategy for surveillance and mitigation should 320 

be built on a multicriteria approach and urgently needs to coordinate the most cost-effective 321 

alternatives and current operating and investing capacities due to socioeconomic contexts, the 322 

current regional diversity of CPPs for each crop, and the governance (including intergovernmental 323 

support in policies and regulations, designating collateral or mutual responsibilities and benefits, 324 

and engaging public awareness) in large-scale biosecurity efforts applied globally to locally. 325 

 326 

METHODS 327 

Risk assessment based on cropland connectivity 328 

We evaluated cropland connectivity as a risk factor for twelve crop species in global and 329 

regional analyses, calculating the cropland connectivity risk index (CCRI) defined by Xing et al.8 and 330 
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using the geohabnet package46. We used Monfreda et al.47, IFPRI and IIASA48 and IFPRI49 as data 331 

sources for the harvested area fraction of each of the twelve crops with original spatial resolution 5 332 

× 5 minutes. We aggregated grid cells into maps of spatial resolution approximately 111 by 111 km 333 

at the equator (that is, land units or grid cells of 1-degree or equivalent to 12 × 12 grids of the 334 

original spatial resolution) for global analysis and 55 by 55 km (grid cells of 0.5-degree) for regional 335 

analysis. 336 

For the network analysis, we considered each aggregated land grid cell as a node, and the relative 337 

risk of pest dispersal between nodes as weighted links50. The relative risk of pest movement based 338 

on proximity between each pair of nodes was calculated for each of two commonly used dispersal 339 

kernels: an inverse power-law function (
𝑑𝑖𝑗

111,319.5
)

−𝛽

, and a negative exponential function 340 

𝑒
−𝛾(

𝑑𝑖𝑗

111,319.5
)
. The Vincenty ellipsoid distance dij between the centroids of each pair of cropland 341 

nodes i and j was calculated using the geographic coordinates in the maps of mean crop harvested 342 

area proportion. The distance between nodes was transformed to Vincenty ellipsoid distances in 343 

meters and then scaled by dividing by the reference distance for one degree of Vincenty ellipsoid 344 

distance at the equator (111,320 m). 345 

An uncertainty quantification, or sensitivity analysis, evaluated how model outcomes 346 

change when one or more parameters varied across a relevant range. Sensitivity analysis allows us 347 

to report results for a range of types of pests with different dispersal kernels. Species-specific 348 

dispersal kernel estimates are often unavailable, so including a range of dispersal kernels allows us 349 

to explore the parameter space likely to be relevant for most pest species. An uncertainty 350 

quantification was performed for dispersal parameters by selecting three levels of parameter 𝛽 351 

(0.5, 1.0, and 1.5) for the inverse power-law function and five levels of parameter 𝛾 (0.05, 0.1, 0.2, 352 

0.3, and 1.0) for the negative exponential function. This range of parameter values is based on 353 



16 
 

empirical estimates for several pests40,41,51,52. Lower values of parameters 𝛽 and 𝛾 indicate higher 354 

likelihood of long-distance dispersal53. When using dispersal kernels of the inverse power-law and 355 

time-steps of 1-degree at the equator, relative chances of pests moving between two cropland 356 

nodes are ~35, 19 and 12% for 𝛽 = 1.5 while ~50, 33 and 25% for 𝛽 = 1 for nodes separated by 357 

~111, 222 and 334 km, respectively. 358 

The relative risk due to larger host populations (or greater cropland area)54 for any two 359 

nodes was accounted for by multiplying together the mean cropland density (c) associated with 360 

each node 𝑖 and 𝑗 (𝑐𝑖𝑐𝑗) in two gravity models for dispersal risk55. These models consider the risk 361 

due to the proportion of cropland area within cropland grid cells (our proxy for host availability) and 362 

the probability of dispersal between each pair of cropland grid cells: 𝜎𝑖𝑝𝑙 ∝ 𝑐𝑖𝑐𝑗 (
𝑑𝑖𝑗

111,319.5
)

−𝛽

 for the 363 

inverse power-law model and 𝜎𝑛𝑒 ∝ 𝑐𝑖𝑐𝑗𝑒
−𝛾(

𝑑𝑖𝑗

111,319.5
)
 for the negative exponential model. We used 364 

both gravity model outcomes to represent the risk of pest movement as link weights between each 365 

pair of nodes in adjacency matrices. 366 

Four standard network metrics for evaluating the importance of nodes in network 367 

processes56 were calculated and combined in a weighted sum in the CCRI. The likely importance of 368 

nodes as bridges was evaluated by emphasizing ½ of the mean index weight with betweenness 369 

centrality, highlighting roles of locations that are often not obvious when the cropland density is 370 

considered in only one cell. When calculating betweenness centrality, link weights are generally 371 

treated as distances or costs to estimate shortest paths between nodes, so only for betweenness 372 

centrality we transformed the link weights in the adjacency matrix as 1 − 𝑒−𝜎𝑖𝑝𝑙  for the inverse 373 

power law model and 1 − 𝑒−𝜎𝑛𝑒 for the negative exponential model. The other half of the index 374 

weight included three metrics that measure the connectivity of a node (node strength weighted by 375 

1/6), its neighbors (1/6 sum of a node’s nearest neighbors’ node degree), and its neighbors’ 376 
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neighbors (1/6 eigenvector centrality; see Table S2). Before summing, each metric was scaled by 377 

dividing by the maximum value observed for that metric for a given crop species. 378 

Threshold minimum values of cropland density and link weight were also evaluated in the 379 

uncertainty quantification. It is unclear, and probably system-specific, the extent to which very low 380 

levels of cropland density facilitate pest dispersal. Use of a threshold focuses the analysis on the 381 

more important production areas. The range of values of cropland density varies by crop. Although 382 

cropland density values generally range between 0 and 1, there are also croplands with locations 383 

where proportion of harvested area is recorded as greater than 1 due to multiple production cycles 384 

a year47. We employed two methods for selecting values of cropland density thresholds. The first 385 

“crop-general” method consists of selecting three constant values as thresholds across all the crop 386 

species, to make crop species comparisons more straightforward (three density values 387 

representing locations with at least 0.01%, 0.2%, and 0.25% cropland coverage). The second 388 

“crop-specific” method includes analyzing the data distribution of cropland proportion values for 389 

each crop species separately, and identifying the 15, 20, or 25th percentile of the cropland density 390 

data for use as thresholds for that crop species. Because the data distributions of cropland density 391 

are positively skewed, we selected small percentile thresholds while keeping a large portion of the 392 

croplands (85, 80 and 75%, respectively; Table S3). Usually the crop-general method retains 393 

smaller portions of the cropland dataset (Table S3). 394 

Cropland connectivity for twelve global crop landscapes – avocado, banana and plantain, 395 

beans, cacao, cassava, coffee, maize, pepper, potato, sweetpotato, tomato, and wheat – was 396 

evaluated both globally and in a targeted regional analysis of Central America and Mexico. In some 397 

cases, multiple categories of the same crop species (e.g., dry beans and green beans) were 398 

combined because pests affect the categories similarly (Table S3). We explore the landscape and 399 

trade of these crops for a wide variety of reasons: their importance in sustaining global food 400 
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security, the relevance for many smallholder farmers in the tropics who strongly depend on them, 401 

some have their center of origin, diversity or domestication in the Americas, the many pest 402 

invasions affecting them, and each crop combines different landscape and trade structures, 403 

allowing our analyses to illustrate and inform across various circumstances. 404 

Interpretation of cropland connectivity maps 405 

Three maps based on the CCRI summarize many features of cropland connectivity. A map 406 

of the mean CCRI, across the results of the uncertainty quantification, shows which regions or 407 

locations in a landscape are likely to be particularly important for many CPP species. A map of the 408 

variance in CCRI across the uncertainty quantification indicates the consistency of the importance 409 

of a location. A map of the difference between CCRI and cropland density points out locations 410 

where the CCRI reveals likely roles for a location that are not simply based on cropland density at 411 

the location. Locations with high cropland connectivity can act as cropland hubs (locations through 412 

which CPPs may effectively spread). Locations with a high, positive difference between rankings for 413 

CCRI and cropland density (locations with high CCRI and relatively low crop density) often have a 414 

potential role as cropland bridges. Because our analysis focuses on the general risk of disease 415 

spread, we consider cropland hubs and bridges in the broad sense as defined above. In the regional 416 

analysis, we refer to these structures as regional cropland hubs or bridges. However, network 417 

analysis usually considers hubs as locations with high node strength, and bridges are locations with 418 

high betweenness centrality. Cropland connectivity risk maps help to identify which counties, 419 

states, or countries potentially have the highest connectivity based on crop hosts.  420 

Risk assessment based on international trade of agricultural commodities 421 

We analyzed information about pairwise trade transactions from the FAOSTAT database57, 422 

using the annual export and import quantity in tonnes for commodities of each crop during the 423 
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most recent fifteen-year period reports for 2005 to 2019. We selected crop commodities more 424 

likely to be risk pathways for CPP spread by excluding those categories processed by fermentation, 425 

roasting, or sterilization (Table S4). In the FAOSTAT dataset, each transaction takes place between 426 

a pair of reporting countries. In an export activity, the reporter is a country that reports exporting 427 

the commodity. Because some smaller transactions may not be reported individually by both 428 

importer and exporter countries, we took the mean of export and import volumes for each pair of 429 

countries to generate a dataset of the trade amount. We excluded ‘unspecified areas’ transactions 430 

from the dataset, for both reporter and partner countries. 431 

For global structures of international trade, we built network visualizations in which nodes 432 

represent countries and directed links represent the potential pathogen or pest movement between 433 

countries due to international trade13. Link weights represent the log-transformed mean annual 434 

trade volume over fifteen years between each pair of countries combined with the level of epidemic 435 

invasion of countries. Because available evidence suggests that volume of trade has often 436 

increased exponentially and the associated invasion rate of CPPs has a linear increase over 437 

time26,27,58, we considered the invasion rate as following a cumulative power-law relationship with 438 

trade volume (Figure Sn). For a trading activity from 𝑖 to 𝑗, τ𝑖→𝑗, the invasion rate 𝐼𝑖→𝑗 ∝439 

(
𝜏𝑖→𝑗

𝑚𝑎𝑥(𝜏𝑖→𝑗)
)

1

𝑛
.  The exponent 𝑛 (set at 2) quantifies the intensity at which invasion rate changes with 440 

trade, and the maximum value of τ𝑖→𝑗  for a crop is a constant to adjust the invasion rate so that it 441 

ranges between 0 and 1. 442 

We construct a ranking for the potential of geographic CPP invasion inspired by concepts 443 

previously developed in a theoretical framework that employs three main factors for invasion 444 

success4. In a global trade network, the relative likelihood of introducing a pest species through 445 

commodity trade in an importing country (𝐼𝑗) is proportional to the sum of the level of invasion risk 446 
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posed by importing from a certain number (𝑧) of exporting countries. We calculated 𝐼𝑗 for each 447 

country involved in the global trade network of specific commodities using the following 448 

proportional relationship. 449 

𝐼𝑗 ∝ ∑
𝑛
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)
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 450 

M is a scaling exponent set at 2. We categorized the levels of each risk factor as in Table 451 

S5-6 and Vignette S1. We approximate local population size (𝜀) of a pathogen/pest as the national 452 

status and extent of a pathogen/pest. Importation results in the risk of CPP introduction to a 453 

country, and exportation results in the risk of CPP release from a country. Disease risk due to CPP 454 

status and extent varies from introduction to release (Figure S8-9). We refer to habitat specificity 455 

(host specificity as a proxy) (𝜔) as the crop host range of a CPP, a function of the number of major 456 

hosts (H) and alternative hosts (h): 𝜔 ∝ ln(2𝐻 + ℎ). Because there can be a great difference 457 

between a wide host range and a narrow host range, we log-transformed the weighted sum of the 458 

number of crop species affected by a CPP59,60. We refer to geographic range as the number of 459 

countries where a CPP is present (𝑛) divided by the number of countries that produce the crop (𝑁). 460 

We also adjusted the geographic range by the extent of the overall crop-specific producing area of 461 

the country57 (CPA) and ranked the results between 1 and 5: 𝛿𝑖  =  
𝑛 

𝑁
∗ ln(𝐶𝑃𝐴)      →     𝛿 =  1 +462 

𝛿𝑖

𝛿𝑚𝑎𝑥
∗ 4. 463 

The overall invasion potential of a country 𝑖 to a specific pathogen/pest is, therefore, a 464 

function of the likely local extent of the focal pathogen/pest (𝜀𝑟 or 𝜀𝑑 for release or introduction, 465 

respectively), its plant host specificity (𝜑), and its geographic range (𝛿𝑖): φ𝑟,𝑖 ∝ (𝜀𝒓,𝒊) × (𝜔𝑖) × (𝛿). 466 

We propose this general conceptual framework as a proxy for the potential CPP invasion in a 467 

country (φ𝑟,𝑖). We combined the level of potential CPP invasion with the level of trade in a gravity 468 
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model. We first consider the level of potential invasion from two perspectives, based on whether the 469 

country evaluated is the source or destination location of trade. If a pest or pathogen is widespread 470 

in a country, the country may act as a source of invasion when exporting commodities. A country 471 

where a pest or pathogen is absent may be a destination of invasion when importing commodities. 472 

The likelihood of being a source or destination location might vary along a continuum depending on 473 

local pathogen/pest population sizes, host specificity of the pathogen, and geographic host 474 

distribution (Table S5). The potential of CPP invasion is a function of the potential initial population 475 

size in the exporting country and the final risk in a disease-free importing country. We used a 476 

gravity model to represent dispersal processes of CPP, in which a relocation function (I𝑖→𝑗 and I𝑖←𝑗 477 

for export and import trade activity, respectively) indicates the potential of the movement of a 478 

pathogen/pest due to the amount of international trade between countries and whether the CPP 479 

invasion potential is higher in the source country (φ𝑟,𝑖) than in the destination country (φ𝑟,𝑗): 𝜎𝑟 ∝480 

φ𝑟,𝑖𝐼𝑖→𝑗

φ𝑟,𝑗
. In our analysis, the structure of trade networks of crop commodities represents a relocation 481 

function as suggested by Jongejans et al55 and Chapman et al6. Outcome values of 𝜎𝑟 represent 482 

entries in an adjacency matrix and link weights in our trade networks, a proxy for the relative 483 

likelihood of very long distance, accidental invasion dispersal events occurring annually due to 484 

formal trade between countries (henceforth pathogen or pest trade movement potential). 485 

The analysis of trade networks as directed networks allows us to determine the potential 486 

influence of each node in terms of its outgoing or incoming links9. To evaluate the role of a country 487 

in the risk of disease dispersal in a trade network, we used four basic measures of network 488 

centrality for each node: node strength, betweenness centrality, PageRank centrality, and 489 

eigenvector centrality (see the rationale for the inclusion of each centrality in Table S2). We scaled 490 

each country centrality value 𝑥𝑖 by subtracting the minimum and then dividing by the variance of 491 

the initial unscaled centrality values, 𝑥𝑛 =  
𝑥𝑖−min (𝑥)

𝑣𝑎𝑟(𝑥)
→ 𝑥𝑠 =

𝑥𝑛

max (𝑥𝑛)
 , so that the resulting country 492 
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centrality values 𝑥𝑠 ranged between 0 and 1. Because combining different network metrics tends to 493 

be more predictive in epidemic networks56 and because we were most interested in the overall 494 

patterns of trade connectivity (separate analyses of each centrality are available in Figure S10-15), 495 

we present an analysis of focal disease dispersal risk due to trade activity based on a weighted 496 

centrality, summing the contribution from each scaled centrality: 1/3 node strength, 1/3 497 

betweenness centrality, 1/6 PageRank and 1/6 eigenvector. To represent the importance of each 498 

country in the trade network, we scaled the resulting weighted centrality between 0 and 1, here 499 

named as a trade connectivity risk index (TCRI).  500 

We distinguish three modes of country node strength in trade networks (out-strength for 501 

exports, in-strength for import, and total-strength for both export and import; details in Table S2). 502 

When calculating TCRI with only outgoing links across the four network metrics (export 503 

neighborhood risk), countries with high TCRI may be more likely to release invasive CPPs. When 504 

calculating TCRI only with incoming links across the four network metrics (import neighborhood 505 

risk), countries with high TCRI are at higher risk of introducing invasive CPPs. When calculating 506 

TCRI with both incoming and outgoing links across the four network metrics, trading countries with 507 

high TCRI may be at risk of release, introduction, or bridge functionality (often not mutually 508 

exclusive and depending on whether a country produces the crop commodity or not), which implies 509 

an easier path for a CPP to spread throughout a trade network. We used node out-strength in our 510 

results as this has been found to be more predictive for epidemic processes of CPPs in directed 511 

networks5,6,44 such as trade (Table S2). To illustrate the risk among trading countries, we provide an 512 

analysis of CPP invasion risk for each crop system for important example species (next section 513 

giving details about specific CPPs).  514 

Regional analysis of crop-commodity trade 515 
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We also integrated international trade networks with cropland connectivity maps. In these 516 

networks, each node represents a country centroid (the central location in latitude and longitude of 517 

a country). Although we used country centroids to illustrate the CPP introduction locations in a 518 

country, they only represented entry points at coarse resolution as actual introduction locations 519 

more likely correspond to ports and surrounding areas. Each link represents the existence of at 520 

least one trade event between two countries, where the arrow point represents the importing 521 

country. Because visualizing multi-link networks (networks with many links between each pair of 522 

countries) on a CCRI map can be impractical, we focused on a set of exporting countries. We 523 

focused on the intercountry trade for countries trading with Central America and Mexico, and on 524 

emerging/reemerging crop CPPs. 525 

Each crop has many CPPs so, for practicality we focused on the major CPPs with a 526 

restricted geographic distribution, focusing on three groups: emerging, reemerging, and endemic 527 

CPPs. We defined diseases as emerging if the disease is becoming of greater importance, with 528 

increases in the incidence, geographic or host range, and virulence61. There can be a lag phase 529 

between introduction and emergence that has a length specific to a given CPP4,16. We focused 530 

mainly on geographic distribution at the country level, CPP category (e.g., oomycete), center of 531 

emergence (the location where the CPP was first reported affecting the crop or where symptoms 532 

were first reported), major and alternative hosts, and main carriers for transmission (this 533 

information is provided in Table S4). The CABI59 and EPPO60 databases provide the geographic 534 

distribution of CPPs at the country scale, we complemented this information with individual 535 

literature about these CPPs. Reports on the geographic distribution tend to be biased toward lack 536 

of reports where there are fewer efforts to characterize systems or incentives to avoid formally 537 

reporting presence. We used formal reports and, in the absence of public, explicit information, we 538 

conducted an expert knowledge assessment of the relative importance of trade for the spread of 539 
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these CPPs. From the list of CPPs for each crop, several of the present authors evaluated the 540 

geographic distribution of CPPs based on own expert experience, and to rank the relative 541 

importance of CPPs in terms of the risk for spread through trade using a rating scaled between 1 to 542 

5 (see details in vignette S3).  543 

Our analysis of global cropland connectivity corresponds to a greater range in latitude [-58°, 544 

60 °] and longitude [-140°, 180°], while the regional analyses focused on a smaller range in latitude 545 

[5°, 32 °] and longitude [-115°, -75°]. Our regional analyses of cropland focused on eight countries: 546 

Mexico, Guatemala, Belize, El Salvador, Honduras, Nicaragua, Costa Rica, and Panama. Analyses 547 

and visual representations were generated using multiple packages in the R programming 548 

environment version 4.1.2. 549 

Scenario analysis for invasion in cropland networks 550 

We aggregated original maps of cropland density into maps of 0.5-degree spatial resolution. 551 

We apportioned each aggregated cropland location in the map of the Americas into their respective 552 

country. Because decisions and strategies are commonly formulated at the national level, we 553 

generated crop-specific adjacency matrices of cropland networks by country.  Nodes in each 554 

national cropland network represent cropland locations with land unit size ≅ 55.7 × 55.7 km2. 555 

Evaluating national networks allows comparison of countries, although it does not specifically 556 

include the risk of invasions across borders. Link weight (𝜔) indicates the likelihood of the spread of 557 

epidemic invasions between cropland locations calculated with a gravity model of the inverse 558 

power-law: 𝜔 = 𝑐𝑖𝑐𝑗𝑑𝑖𝑗
−𝛽. Parameters were the same as in the cropland connectivity analysis. 559 

Cropland thresholds were the crop-specific threshold values used for cropland connectivity 560 

analyses. After applying the crop-specific thresholds, cropland density was scaled so that the 561 

maximum value was 1. We evaluated a single value of the parameter 𝛽 (1.5) and a single threshold 562 
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for the value of link weights that considers the formation of links only when the distance between 563 

croplands was 500 km or shorter (known as maximum search radius). 564 

We used the INAscene function of the INA package21 to evaluate scenario analyses of CPP 565 

establishment, spread, and management on the cropland network of each country in the Americas 566 

as follows (see Vignette S2 and the INA user guide62 for complete descriptions and definitions of 567 

parameters). We evaluated scenarios for cropland locations initially having information about 568 

management (initinfo.p = 0.01,0.05, 0.1, or 0.2), and CPPs established (a proxy for outbreak size, 569 

initbio.p = 0.01, 0.05, or 0.1). Socioeconomic and biophysical cropland networks by country were 570 

generated using gravity models as described above in this section. We also evaluated scenarios 571 

based on different probabilities of the adoption of management (probadoptmean = 0.1, 0.5 and 572 

probadoptsd = 0.1, 0.3), probabilities of establishment of CPPs (probestabmean = 0.5, 0.7 and 573 

probestbsd = 0.1, 0.25), and different effect sizes for management (maneffmean = 0.3, 0.5 and 574 

maneffsd = 0.1). We conducted 10 realizations for each scenario to evaluate, for each country, the 575 

mean invasion rate (proportion of croplands in the national network with the invasive species 576 

established) after five-time steps from randomly assigned initial invasion locations (nreals = 100 577 

and ntimesteps = 5). We conducted a sensitivity analysis for the 384 scenarios to determine the 578 

mean and variance of the national invasion rates, comparing the risk of spread of CPPs for each 579 

combination of country and crop. We considered only countries having at least five cropland cells 580 

for a given crop.  581 

We also evaluated the network density of each national cropland network. Network density 582 

is the proportion of links formed over the total number of potential links of an epidemic network and 583 

is a measure of the likely epidemic connectivity of a cropland network. We examined the 584 

relationship between these variables by fitting the log-transformed size of national cropland 585 

networks (number of cropland nodes) as a potential explanatory variable for the average proportion 586 
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of establishment, the variation of the establishment, and density of cropland network. We selected 587 

linear regression models based on 𝑅2 and statistical significance (P<0.001). 588 

Risk commonalities in cropland and trade networks 589 

We explore common characteristics among crop connected landscapes through 590 

comparison of distribution of CCRI values. We assessed the consistency of available cropland 591 

density maps with our knowledge of actual distributions of cropland. We identified three general 592 

patterns in cropland connectivity across crops. Whether locations with high cropland density 593 

remain with a high CCRI (1), whether the position of cropland bridges in reference to cropland hubs 594 

is common across crops (2) and whether the size and location of cropland hubs in relation to the 595 

remaining landscape vary across crops (3). 596 

Network science provides a unified perspective on the characteristics of international crop 597 

trade systems. Trade networks of crop commodities are complex, and their general attributes can 598 

influence the risk of the spread of CPPs. We evaluated whether national connectivity in agricultural 599 

trade networks follows a scale-free power-law distribution – a general network feature likely to 600 

influence CPP spread9– using a Kolmogorov-Smirnov (KS) test. A KS test evaluates whether a 601 

network fits the power-law distribution and if so, finds the exponent that fits the model based on 602 

maximum likelihood. To evaluate whether countries with similar levels of centrality are connected 603 

(i.e., whether there is preferential connectivity among two countries with high node strength), we 604 

calculated the assortativity among countries based on five centralities (node strength, node degree, 605 

betweenness, PageRank and eigenvector centrality). We also built a matrix to identify which 606 

countries with the highest TCRI are the same in multiple trade networks (Table S7-8). 607 

 608 

Data availability  609 
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Data sources are provided with this paper. Maps of cropland connectivity are available at 610 

https://figshare.com/account/home#/projects/147823, markdown reports. 611 

Code availability 612 

The latest versions of code templates for reproducing the analyses presented in this article is 613 

available at: https://github.com/GarrettLab/CroplandConnectivity for cropland connectivity, 614 

https://github.com/AaronPlex/InternationalTradeNetworks for trade networks and 615 

https://github.com/GarrettLab/INA for scenario analysis. 616 

 617 
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